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Abstract

The electrostatic potential is a multicenter property that
can be expressed as a sum of the contributions of electric
moments located at each atomic site of a molecule.
Independently of the model used to generate the
electrostatic potential around the system, these atomic
moments can be accurately obtained by the ®t of this
physical property outside the van der Waals envelop.
However, the larger the system, the greater the number
of parameters. In this study a way is proposed to reduce
the number of centers in the representation of the
electrostatic potential which becomes a sum of fragment
contributions rather than atomic ones. A sample of six
water molecules in different crystal environments was
chosen to discuss the derived values of the electric
moments referred to the molecular center of mass.

1. Introduction

In molecular modeling and drug design, it is necessary to
estimate accurately the electrostatic energy which is
often predominant in the interaction between molecules.
With the increase of the size of the system (polypeptides,
macromolecules, proteins etc.), the electrostatic energy
estimation is reduced, in a ®rst approximation, to the
Coulombic interaction evaluation involving the atomic
net charges only. Moreover, these latter quantities are
supposed to be intrinsic properties in the sense that they
have to mimic the interaction of the molecule in
different circumstances, that is to say, they must be
ideally non-conformation-dependent. First theoretical
methods to derive the net atomic charges were based on
the knowledge of the electron-density distribution of the
molecule. Methods like Mulliken population analysis
(Mulliken, 1955) have been widely used to estimate
partial atomic charges from ab initio theoretical calcu-
lations. These atomic charges are, however, not invariant
and strictly depend on the size of the basis set used for
molecular wave-function calculations. The main dif®-

culty in deriving these atomic net charges originates
from the overlapping of the electron density and from
the charge transfer inside the molecule. Thus, it is
necessary to partition the molecule in order to integrate
the electron density in the real space of each atom to get
its partial charge. Among the partitioning methods, that
based on electron-density topology (Bader & Essen,
1984; Bader et al., 1984; Bader, 1990) delimits the atomic
space in the molecule by the zero-¯ux electron-density-
gradient surface giving rise to nontrivial volume shapes.
Another method to derive atomic net charges was
proposed by Momany (1978) and is based on the
molecular electrostatic potential. This observable
physical property is directly related to the interaction
concept since it corresponds to the electrostatic energy
of a probe unit positive charge gravitating around the
molecule. With respect to the electron-density integra-
tion approach, the molecular electrostatic potential
possesses the advantage of being less dependent on the
basis sets and it also compares very well with that
derived from high-resolution X-ray diffraction (Espi-
nosa, Lecomte, Ghermani et al., 1996). In a ®rst
approximation, the molecular electrostatic potential can
be described by point charges at the atomic nuclei
without any volumic consideration (Gauss theorem).
These charges are obtained from the molecular elec-
trostatic potential by means of a least-squares ®t. For
this purpose, at each point of a sampling grid chosen
around the molecule, the electrostatic potential is
evaluated by quantum-mechanics calculations or from
experimental results. As shown by many authors
(Woods et al., 1990; Ghermani et al., 1993; Spackman,
1996), the grid-points location is crucial in the deter-
mination of the net charges. Different sampling points
around the molecule were chosen in order to improve
the ®t, from cubic (Momany, 1978) to randomly
distributed grid points (Woods et al., 1990) on shells that
are at van der Waals distances from the nuclei.
Spackman (1996) has proposed a geodesic tessellation of
the atomic spherical shells. We also proposed a sampling
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of equi-distributed points on spheres around the atoms
where the contribution to the electrostatic potential on
the grid points (Bouhmaida et al., 1997) is weighted with
respect to steric considerations. All these sampling
methods joined to robust least-squares procedures were
developed in order to ensure the stability of the net
charge values whatever the molecular conformation and
geometry.

On the other hand, Price et al. (1984) have shown that
a truncation of the electrostatic potential at the mono-
pole level (charge) on each nuclear site is insuf®cient for
an accurate determination of the interaction energy.
This is in agreement with Spackman (1986), who
emphasized that moments up to quadrupoles are needed
in the interaction energy estimation. More recently,
Koch & Egert (1995) have also shown the necessity to
take into account the atomic quadrupole±quadrupole
interactions in force-®eld calculations on molecules
displaying hydrogen bonds or �±� overlap. This fact is
related to the dif®cult description of the electron
deformation density by a single point charge on the
atomic position for such systems. For example, inter-
actions like the hydrogen bond involving acceptor lone
pairs or like aromatic rings �±� overlap occur in the
proximity of the molecules where contributions domi-
nate those of point charges. It is also in agreement with
some of our results (Ghermani et al., 1993; Bouhmaida et
al., 1997), where we have demonstrated the experi-
mental electrostatic potential ®t improvement when the
contribution from higher multipoles is taken into
account; in our last paper (Bouhmaida et al., 1997), we
®tted the electrostatic potential with a set of net charges
and multipole moments centered at each nucleus which
accurately describes the experimental electrostatic
potential. Even though the number of multipole
moments has been reduced by chemical constraint or
statistical consideration, it remains high (132 parameters
for a 30-atom molecule) to be used directly in force-®eld
calculations for large systems. Therefore, in this paper,
we propose a method to recover the molecular elec-
trostatic potential from fragmental rather than atomic
contributions: we have used the analytical transforma-
tions of the real spherical harmonics (Hobson, 1931) in
order to evaluate the Buckingham electric moments
(Buckingham, 1959) for chosen fragments of a molecule
after an initial ®t of the electrostatic potential which
provides the moments for each atom of the system
(Bouhmaida et al., 1997). This method may be applied to
electrostatic potentials obtained from other experiments
or theoretical calculations. Without any integration of
the electron density, the results allow retrieval of
intrinsic physical properties of the fragments which can
be compared with theoretical calculations or experi-
mental measurements (e.g. dielectric permittivity,
Stark effect, induced birefringence). This paper des-
cribes the method and shows applications to the water
molecule.

2. Methodology

2.1. Molecular-fragment moments from the ®t of the
experimental electrostatic potential

In the Hansen±Coppens model (Hansen & Coppens,
1978) used for the determination of the electron density
from high-resolution X-ray diffraction data, the pseudo-
atom electron density is given by

�at�r� � �core�r� � Pval�
3�val��r�

�P
l

�03Rnl��0r�
P
m

Plmylm���; '�; �1�

where �core�r� and �val�r� are the spherical core and
valence Hartree±Fock electron densities, respectively.
ylm� are the real spherical harmonics modulated by the
Slater-type radial functions Rnl�r�. Pval and Plm are the
valence and the deformation populations and � and �0

are electronic cloud contraction±expansion coef®cients
(Coppens et al., 1979).

Once these model parameters are determined, the
molecular electrostatic potential can be calculated
analytically (Ghermani et al., 1991, 1992±1998) and
taken as observable to ®t the atomic net charges
(Ghermani et al., 1993) and atomic multipolar moments
(Bouhmaida et al., 1997) using the expansion:

V�r� �P
j

P
lm

Qjlmylm���; '�=jrÿ Rjjl�1; �2�

where Qjlm is the nucleus-centered ®tted lth-order
moment of atom j at Rj, � and ' are the spherical angles
of the vector �rÿ Rj� and ylm� are the angular functions
de®ned in Appendix A. In our ®tting procedure
(Bouhmaida et al., 1997), the sampling points are equi-
distributed on spherical shells around each nucleus
(Ghermani et al., 1993). The originality of our method
lies in the cancellation of the jth-atom contribution to
the electrostatic potential when its distance jrÿ Rjj to
the grid point is less than 2 AÊ . The ®tted Qjlm atomic
multipole moments are given in the local atomic frame,
which allows comparison between chemically con-
strained or symmetry-equivalent atoms.

In order to formulate the total moment for a given
fragment, it is necessary to express the ®tted atomic
moments with respect to a common origin Rg chosen for
example at the center of mass of this fragment. Using
the de®nition of the spherical harmonics, formula (2)
can be rewritten:

V�r� �P
j

P
lm�0

�NlmPm
l �cos ��=jrÿ Rjjl�1�

� �Qjlm cos m'�Qjl �m sin m'�; �3�
where the Pm

l �cos �� are the associated Legendre
polynomials, �m � ÿm and Nlm are the normalization
factors given in Appendix A. A positive translation
c � jRg ÿ Rjj, where Rj is the nucleus center, parallel
to the k axis leaves the ' angle of vector �rÿ Rj�
unmodi®ed where � changes to �0 (see Fig. 1). With
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respect to this k-axis translation, we have
jrÿ Rjj cos � � jrÿ Rgj cos �0 � c and, when
c< jrÿ Rgj, the Legendre polynomials Pm

l �cos ��
related to angle � become (Hobson, 1931):

Pm
l �cos ��=jrÿ Rjjl�1

� Pm
l �cos �0�=jrÿ Rgjl�1 ÿ c�l ÿm� 1�
� Pm

l�1�cos �0�=jrÿ Rgjl�2 � 1

2!
c2�l ÿm� 1�

� �l ÿm� 2�Pm
l�2�cos �0�=jrÿ Rgjl�3

ÿ 1

3!
c3�l ÿm� 1��l ÿm� 2��l ÿm� 3�

� Pm
l�3�cos �0�=jrÿ Rgjl�4 � . . . ; �4�

where cos � and cos �0 are polar coordinates of �rÿ Rj�
and �rÿ Rg� vectors, respectively. Then, the translated
j-atom moment Q0jlm with respect to the new origin at Rg

(center of mass) is related to nucleus-centered moments
Qjlm as follows:

Q0jlm �
Pl

k�jmj
�ÿ1�lÿk��l ÿ jmj�!=�l ÿ k�!�kÿ jmj�!�clÿkQjkm:

�5�
Q0jlm moment expressions for l � 1 to l � 4 are listed in
Appendix B. These relations are in good agreement with
those given by McLean & Yoshimine (1967) in their
paper dealing with the transformation of components of
the polarization tensors. It is worth noting that the
charges and the atomic moments Qjl��l�, which are not �
dependent, are invariant in this origin translation. Once
this translation is made, the molecular fragment
moments are then obtained by summing the corre-
sponding translated atomic moments.

2.2. Molecular fragment traceless moments

The electrostatic potential expansion is originally
related to the traceless moments (Buckingham, 1959):

V�r� � Q=r�P
�
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where �� are the dipole moment components, ���, 
��


and ���
� are the traceless quadrupole, octupole and
hexadecapole moment tensors, respectively. These
quantities are de®ned as follows:
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where ��r� is the electron density of the molecule. The
traceless conditions are

P
� ��� � 0,

P
� 
��� � 0,P

� ����� � 0 for the quadrupoles, octupoles and
hexadecapoles, respectively.

In our case, according to the Cartesian harmonics
given in Appendix A, the expression for the electrostatic
potential up to octupole level, in the case of one frag-
ment, can be expressed as:

V�r� � Q00=jrÿ Rgj � �Q11x�Q1�1y�Q10z�=jrÿ Rgj3
� �Q22�x2 ÿ y2� �Q2�2xy�Q21xz�Q2�1yz

�Q20�3z2 ÿ r2��=jrÿ Rgj5 � �Q33�x3 ÿ 3xy2�
�Q3�3�3yx2 ÿ y3� �Q32z�x2 ÿ y2� �Q3�2xyz

�Q31�5z2xÿ r2x��=jrÿ Rgj7
� �Q3�1�5z2yÿ r2y� �Q30�5z3 ÿ 3r2z��=jrÿ Rgj7:

�8�
The monopole and dipole contributions to the electro-
static potential are the same as in formula (6); in order
to be in agreement with the Buckingham (1959) de®ni-
tion, the quadrupole and the octupole part VQ;O�r� of
this potential can be reformulated as:

VQ;O�r� � jrÿ Rgjÿ5��Q22 ÿQ20�x2 ÿ �Q22 �Q20�y2

� 2Q20z2 �Q2�2xy�Q21xz�Q2�1zy�
� jrÿ Rgjÿ7��Q33 ÿQ31�x3 ÿ �Q3�3 �Q3�1�y3

� 2Q30z3 � �3Q3�3 ÿQ3�1�yx2

ÿ �3Q33 �Q31�xy2 � 4Q31xz2 � 4Q3�1yz2

� �Q32 ÿ 3Q30�zx2 ÿ �Q32 � 3Q30�zy2

�Q3�2xyz�:
Consequently, the relations between the ®tted Qlm

moments and the Buckingham traceless components
are:

Fig. 1. Origin translation and related vectors.
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�xx � Q22 ÿQ20

�yy � ÿQ22 ÿQ20

�zz � 2Q20

�xy � 1
2 Q2�2

�xz � 1
2 Q21

�yz � 1
2 Q2�1


xxx � Q33 ÿQ31


zzx � 4
3 Q31


yyy � ÿQ3�3 ÿQ3�1


xxz � ÿQ30 �Q32=3


zzz � 2Q30


yyx � ÿQ33 ÿQ31=3


xxy � Q3�3 ÿQ3�1=3


zzy � 4
3 Q3�1


yyz � ÿQ30 ÿQ32=3


xyz� 
3�2=6:

�9�

Furthermore, the symmetric traceless quadrupole tensor
can be diagonalized to get the eigenvalues and the
eigenvectors of the quadrupole moment.

All these transformations are coded in a new version
of the ELECTROS program (Ghermani et al., 1992±
1998), which determines the atomic moments using the
®t of the electrostatic potential. The calculations of
molecular or fragmental moments are performed in the
center-of-mass local frame and the obtained quadrupole
traceless components are diagonalized for comparison
with other experimental or theoretical results. From the
least-squares method, we get the variance±covariance
matrix Mx. The propagation of errors is calculated using
the formula Mu � DMxDT (Coppens, 1997), where D is
the matrix of the derivatives of the new parameters uj

with respect to the variables xi. The calculated standard
uncertainties (s.u.'s) do not take into account either the
variances of the experimental electrostatic potential
values at the grid points or the s.u.'s of the atomic
positional parameters.

3. Application to the water molecule

The water molecule has the advantage of being small
and therefore numerous theoretical calculations and
experimental results of molecular moments are avail-
able in the literature (see for example Colonna et al.,
1990; Spackman, 1992). Our six-water-molecule sample

Table 1. Water molecule bond lengths (AÊ ) and angles (�)

The s.u.'s in parentheses for LAP are for neutron diffraction results.

TGG ENK ASPA1 ASPA2 LAP NAT

OwÐHw1 0.96 0.96 0.96 0.96 0.967 (5) 0.97
OwÐHw2 0.96 0.96 0.96 0.96 0.992 (5) 0.97
Hw1ÐOwÐHw2 110.0 98.8 108.0 110.9 107.6 (4) 114.5

Water molecule bonds
Ow 1.77 (HÐN) 1.94 (HÐN) 1.80 (HÐO) 1.80 (HÐO) 1.883 (5) (HÐN) 2.37 (Na+)

1.89 (HÐN) 2.39 (Na+)
Hw1� � �O 1.85 1.79 1.73 1.97 1.793 (4) 1.89
Hw2� � �O 1.79 1.89 1.75 1.80 1.847 (5) 2.06

Fig. 2. Experimental electrostatic potential for ASPA1 and NAT water
molecules. Contour intervals are 0.02 e AÊ ÿ1; negative contours are
dashed and the zero contour is the heavy line.
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originates from several charge-density studies; all the
water molecules are hydrogen bonded to peptide or
amino acid molecules: leucine±enkephaline trihydrate
(hereafter ENK) (Pichon-Pesme et al., 1994), tyrosine±
glycine±glycine monohydrate (hereafter TGG)
(Lachekar, 1997), aspartic acid±glycine dihydrate
(hereafter ASPA1 and ASPA2 for the two independent
water molecules) (Lachekar, 1997), l-arginine phos-
phate monohydrate (hereafter LAP) (Espinosa,
Lecomte, Molins et al., 1996); the last water molecule is
bound to the framework of a natural zeolite, natrolite
(hereafter NAT) (Ghermani et al., 1996). Table 1 gives
the bond lengths and angles of these water molecules
and their respective hydrogen and oxygen bonds in the
crystal based on X-ray diffraction experiments (except
for LAP for which the neutron diffraction structure was
used). In all X-ray diffraction experiments, H atoms
were found from Fourier difference maps and their
coordinates were extended along the OÐH bond
according to the neutron data value [d(OÐH) = 0.96 AÊ

(Allen, 1986)], therefore, the OÐH bond lengths are
equal. For the LAP water molecule in the crystal
(neutron data), one OwÐHw bond length is longer
[0.992 (5) AÊ ]. For the six water molecules, HwÐOwÐHw

angle values are in the range 98.8 (ENK) to 114.5�

(NAT) owing to hydrogen-bond interactions. All the
water-molecule O atoms are hydrogen bonded to HÐO
or HÐN bonds except for the NAT O atom, which is

coordinated to two Na+ cations. Moreover, NAT and
ASPA1 O atoms both accept two bonds (Ow� � �Na+ =
2.37 and 2.39 AÊ for NAT and Ow� � �HÐO = 1.80,
Ow� � �HÐN = 1.89 AÊ for ASPA1). All the water-mol-
ecule H-atom pairs are linked to O atoms in the crystals.
The shortest hydrogen-bond length is found in the
ASPA1 crystal (Hw� � �O = 1.73 AÊ ), the longest in the
NAT zeolite compound (Hw� � �O = 2.06 AÊ ).

The electron-density multipole parameters (Pichon-
Pesme et al., 1994; Lachekar, 1997; Espinosa, Lecomte,
Molins et al., 1996; Ghermani et al., 1996) were used to
calculate the experimental electrostatic potential for the
six pseudo-isolated water molecules. As an example,
Fig. 2 displays the observed electrostatic potential
around NAT and ASPA1 water molecules. The maps for
the other molecules have been deposited.² The effect of
environment interaction shows on the extent of both
positive (electrophilic) and negative (nucleophilic)
regions as well as the electrostatic potential minimum at

Table 2. Water molecule electric moments in the center of mass inertial frame and the averaged values of signi®cant
moments

The least-squares standard uncertainties (s.u.'s) and the root mean square deviations for the mean values are given in parentheses.

TGG ENK ASPA1 ASPA2 LAP NAT Averaged moments

Charge q ÿ0.004 (1) ÿ0.007 (1) 0.004 (1) 0.004 (1) 0.002 (1) 0.001 (1) ±

Dipoles (10ÿ30 C m)
�x 0.503 (1) ÿ0.597 (2) ÿ0.228 (1) ÿ0.163 (1) 0.686 (1) 0.867 (2) ±
�y 0.006 (1) ÿ0.522 (1) 1.308 (1) 0.933 (1) ÿ0.584 (1) ÿ1.823 (1) ±
�z 6.494 (1) 8.412 (2) 7.949 (1) 7.110 (1) 7.413 (1) 6.700 (1) 7.3 (7)

Modulus 6.513 (1) 8.450 (2) 8.059 (1) 7.173 (1) 7.467 (1) 6.998 (1) 7.4 (7)
In debye 1.953 (1) 2.533 (1) 2.416 (1) 2.150 (1) 2.239 (1) 2.098 (1) 2.2 (2)

Quadrupoles (10ÿ40 C m2)
�xx 8.554 (4) 8.592 (5) 10.973 (5) 10.859 (4) 8.876 (4) 7.972 (5) 9.3 (13)
�yy ÿ7.587 (3) ÿ10.542 (5) ÿ9.383 (3) ÿ10.089 (3) ÿ7.630 (3) ÿ6.186 (4) ÿ8.6 (17)
�zz ÿ0.968 (4) 1.950 (5) ÿ1.589 (4) ÿ0.770 (3) ÿ1.246 (4) ÿ1.786 (4) ±

Octupoles (10ÿ50 C m3)

xxx ÿ0.165 (10) ÿ0.336 (12) 0.006 (10) 0.631 (8) ÿ0.163 (10) 0.769 (11) ±

yyy ÿ0.015 (9) 1.028 (12) ÿ1.363 (9) 1.796 (7) 1.279 (9) 2.147 (9) ±

zzz ÿ7.101 (8) ÿ6.594 (12) ÿ6.874 (10) ÿ8.425 (7) ÿ6.446 (8) ÿ6.298 (9) ÿ6.9 (7)

xxy 0.005 (7) ÿ0.642 (9) 1.569 (7) ÿ1.098 (6) ÿ1.060 (7) ÿ1.927 (8) ±

xxz 11.772 (7) 12.973 (11) 12.204 (8) 14.907 (6) 10.824 (7) 9.843 (8) 12.1 (17)

yyx ÿ0.006 (7) 0.189 (10) 0.458 (7) ÿ0.415 (6) ÿ1.336 (7) 1.364 (7) ±

yyz ÿ4.671 (7) ÿ6.380 (10) ÿ5.330 (7) ÿ6.482 (5) ÿ4.378 (7) ÿ3.545 (7) ÿ5.1 (11)

zzx 0.171 (9) 0.146 (11) ÿ0.519 (9) ÿ0.216 (7) 1.499 (9) ÿ2.133 (10) ±

zzy 0.010 (6) ÿ0.386 (10) ÿ0.206 (7) ÿ0.697 (5) ÿ0.219 (6) ÿ0.219 (7) ±

xyz ÿ0.009 (6) 0.270 (8) 1.714 (6) ÿ0.114 (5) ÿ0.146 (6) 0.808 (6) ±

² The observed electrostatic potential around the water molecules for
TGG, ASPA2, LAP and ENK, the electric moments generated
electrostatic potential up to hexadecapole level for TGG, ASPA2,
ENK and LAP water molecules, the difference maps between the
generated potential with moments up to hexadecapole level and the
observed electrostatic potential for ASPA1 and NAT water molecules,
and a table giving the hexadecapole moments for the six water
molecules have been deposited with the IUCr. These are available
from the IUCr electronic archives (Reference: AU0162). Services for
accessing these data are described at the back of the journal.
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approximately 1 AÊ from the Ow nuclei, which is in the
range ÿ0.14 (TGG) to ÿ0.22 e AÊ ÿ1 (ASPA1) for the six
molecules.

In order to get the Qjlm atomic moments, the ®t of the
electrostatic potential was carried out with 177 spheri-
cally equi-distributed grid points per atom (Ghermani et
al., 1993) at a distance jrÿ Rjj equal to 2 AÊ from the
nuclei using the method described in the previous paper
(Bouhmaida et al., 1997). The obtained least-squares
residual factors de®ned by

R �%� � PNobs

i

�Vobsi
ÿ Vcalci

�2
�PNobs

i

V2
obsi

� �1=2

are all less than 0.2% for any water molecule, showing
the adequacy of the ®t. These atomic moments were
used to calculate the molecular moments [formula (4) in
x2] with respect to an origin at the molecular center
of mass as recommended by Spackman (1992). The
orthonormal frame was chosen such that the k axis
bisects the two OwÐHw bonds, the i axis being in the
plane of the water molecule. Table 2 gives the results
for each of the six water molecules. Without any
electroneutrality constraint in the ®t procedure, the
total charge is almost zero for all the molecules. The
molecular dipole moment (in debye, 1 D =
3.33564 � 10ÿ30 C m) values are in the range of 1.95
(TGG) to 2.53 D (ENK). Spackman (1992, and refer-
ences cited therein) has reported water-molecule dipole-
moment magnitudes ranging from 1.6 to 2.7 D from
X-ray diffraction experiments, 1.9 D from gas
measurement and 2.2 D from SCF/6-31G** theoretical
calculations. These values are in excellent agreement

with those derived in the present study from the ®t of
electrostatic potential given in Table 2.

In our study, the calculated mean dipole moment
value is equal to 2.23 D with an estimated root mean
square deviation �nÿ1 = 0.22 D for the chosen six-
molecule sample. This dispersion certainly re¯ects the
different environments of the water molecules in the
solid state. Furthermore, the very low standard uncer-
tainties (s.u.'s) given in Table 2 are solely derived from
the least-squares method and are far from this �nÿ1

value. On the other hand, the dipole moment for a free

Fig. 3. Experimental electrostatic potential for NAT water molecule in
the jk plane. The distance to the plane of the Na+ cation neighbors is
indicated close to the label. Same contours as in Fig. 2.

Fig. 4. Up to octupole level electric moments generated electrostatic
potential for ASPA1 and NAT water molecules. Same contours as in
Fig. 2.
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water molecule must be ideally parallel to the chosen k
axis respecting C2v symmetry. However, owing to inter-
molecular interactions in the crystal, ASPA1 and NAT
water molecules have non-negligible dipole components
along the j axis perpendicular to the molecular plane,
the higher value of �y reaching 0.55 D for the NAT
molecule. According to their environment in the solid
state, ASPA1 and NAT are those that have a doubly
bonded O atom. The molecule dipole-moment vector
component along the j axis may be related to Ow lone-
pair rotation owing to the asymmetric Ow� � �X bonds as
shown in Fig. 3, which displays the electrostatic potential

around the NAT water molecule in the jk plane. On the
other hand, a nonzero �x molecular dipole component
involves the contribution of both O and H atoms. The
largest �x value of 0.26 D [0.867 (2) � 10ÿ30 C m] was
found for the NAT water molecule. In Table 2 are also
given the eigenvalues of the traceless quadrupole
moment tensor with respect to the center-of-mass iner-
tial frame. The obtained values are of the same order of
magnitude as those reported by Spackman (1992) from
experimental (for the gas, �xx = 8.77, �yy = ÿ8.34 and
�zz = ÿ0.43 � 10ÿ40 C m2; from multipole analysis, �xx =
11.0, �yy = ÿ13.0 and �zz = 2.0 � 10ÿ40 C m2) or theor-
etical estimates (ab initio SCF/6-31G**, �xx = 7.93, �yy =
ÿ7.59 and �zz = ÿ0.33 � 10ÿ40 C m2). For all water
molecules, the eigenvectors, i.e. the principal directions
of the quadrupole tensor, are nearly parallel to the
reference axes. The �xx and �yy components have
comparable absolute values between 7.5 and
11.0 � 10ÿ40 C m2, respectively, when �zz is on average
at least three times lower. The �zz sign is negative for all
the molecules except ENK, for which the corresponding
absolute value of this component is also the highest. In
the leucine±enkephaline (ENK) study, owing to the
great number of atoms in the unit cell, the three water
molecules were constrained during the electron-density
re®nement (Pichon-Pesme et al., 1994). Therefore, the
obtained values have to be considered with caution.
Three signi®cant 
 octupole moment tensor principal
components arise from the ®t of the experimental
electrostatic potential for the six water molecules: 
zzz,

xxz and 
yyz with on average |
xxz| > |
zzz| > |
yyz|
(Table 2). The respective values of the principal octu-
pole components compare well from one molecule to
another. Comparatively, if the magnitude of the water-
molecule quadrupole-moment components agree with
those reported by Colonna et al. (1990) [SCF wave-
function calculation using distributed multipole analysis

Fig. 5. Up to hexadecapole level electric moments generated
electrostatic potential for ASPA1 and NAT water molecules. Same
contours as in Fig. 2.

Fig. 6. The six chosen fragments of the pseudopeptide molecule
N-acetyl-�,�-dehydrophenylalanine methylamide (broken lines).



736 MOLECULAR FRAGMENT ELECTRIC MOMENTS

(DMA)], their octupole components are about two
times lower than those obtained in the present study.

The electrostatic potential calculated with the mole-
cular moments reported in Table 2 is shown in Fig. 4 for
NAT and ASPA1 water molecules. The calculated and
observed electrostatic potential (Fig. 2) features
compare very well beyond a distance of 1.5 AÊ from the
nuclear sites. However, two negative lobes appear at a
close distance from the Ow nucleus on both maps in Fig.
4. They are due to the limitation at the octupole level of

the molecular moment at the center of mass; the
reduction from three centers to one center necessitates
higher multipole functions. To show this, we have
calculated corresponding hexadecapole moments at the
center of mass using (4), from the Ow and Hw atomic
moments (octupole level for Ow and dipole level for
Hw). The correspondence between Qlm moments and
the Buckingham traceless hexadecapole components are
given in Appendix C. The values of the hexadecapole
moments for the six water molecules have been depos-

Fig. 7. Electrostatic potential maps of the two peptide links of N-acetyl-�,�-dehydrophenylalanine methylamide molecule: (a) experimental
electrostatic potential; (b) up to hexadecapole level electric moments generated electrostatic potential. Same contours as in Fig. 2.
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ited. Fig. 5 shows the maps of the resulting electrostatic
potential for NAT and ASPA1 water molecules. The
region close to the Ow nuclei is clearly better reproduced
compared to Fig. 4. The difference maps between the
generated potential with moments up to hexadecapole
level and the observed electrostatic potential for ASPA1
and NAT water molecules have been deposited. The
difference is almost zero in the intermolecular regions
showing the excellent one-center electric moment
representation of the experimental electrostatic poten-
tial.

4. Conclusions

Once the atomic moments are available from the ®t of
the electrostatic potential, the molecular or fragment
electric moments can be analytically obtained by the
Legendre polynomial translation method (Hobson,
1931). The electrostatic potential is expressed according
to the Buckingham expansion with electric moments
related to the molecular center of mass. These physical
properties have been derived for the water molecule in
the solid state. Furthermore, this method seems to be
powerful even for systems as large as a 30-atom
pseudopeptide molecule N-acetyl-�,�-dehydro-
phenylalanine methylamide (Souhassou et al., 1992;
Bouhmaida et al., 1997) for which the six chosen frag-
ments are represented in Fig. 6. Fig. 7 shows the excel-
lent agreement between the observed (Fig. 7a) and
fragment-moment-generated electrostatic potentials
(Fig. 7b) in the planes of the two molecular peptide
bonds outside the atomic van der Waals radii. Applica-
tion of the method to fragments in large amino acid
systems is in progress in order to reduce the number of
centers for the electrostatic potential representation.

APPENDIX A
Cartesian expressions for the real spherical harmonic

functions

Cartesian expressions for the real spherical harmonic
functions used in this paper and their relation with the
associated Legendre polynomials Pm

l [formula (3) in the
text] are given below.

APPENDIX B
Relations between translated Q0lm and Qlm moments up

to hexadecapole level

Q010 � Q10 ÿ cQ00

Q011 � Q11

Q0
1�1
� Q1�1

Q020 � Q20 ÿ 2cQ10 � c2Q00

Q021 � Q21 ÿ cQ11

Q0
2�1
� Q2�1 ÿ cQ1�1

Q022 � Q22

Q0
2�2 � Q2�2

Q030 � Q30 ÿ 3cQ20 � 3c2Q10 ÿ c3Q00

Q031 � Q31 ÿ 2cQ21 � c2Q11

Q0
3�1
� Q3�1 ÿ 2cQ2�1 � c2Q1�1

Q032 � Q32 ÿ cQ22

Q0
3�2 � Q3�2 ÿ cQ2�2

Q033 � Q33

Q0
3�3
� Q3�3

Q040 � Q40 ÿ 4cQ30 � 6c2Q20 ÿ 4c3Q10 � c4Q00

Q041 � Q41 ÿ 3cQ31 � 3c2Q21 ÿ c3Q11

Q0
4�1
� Q4�1 ÿ 3cQ3�1 � 3c2Q2�1 ÿ c3Q1�1

Q042 � Q42 ÿ 2cQ32 � c2Q22

Q0
4�2 � Q4�2 ÿ 2cQ3�2 � c2Q2�2

Q043 � Q43 ÿ cQ33

Q0
4�3
� Q4�3 ÿ cQ3�3

Q044 � Q44

Q0
4�4
� Q4�4

ylm� Cartesian form NlmPm
l

cos m'
sin m'

�
y00 1 P0

0

y11� x P1
1 cos '

y11ÿ y P1
1 sin '

y10 z P0
1

y22� x2 ÿ y2 1
3 P2

2 cos 2'

y22ÿ xy 1
6 P2

2 sin 2'

y21� xz 1
3 P1

2 cos '

y21ÿ yz 1
3 P1

2 sin '

y20 3z2 ÿ r2 2P0
2

y33� x3 ÿ 3xy2 1
15 P3

3 cos 3'

y33ÿ 3yx2 ÿ y3 1
15 P3

3 sin 3'

y32� �x2 ÿ y2�z 1
15 P2

3 cos 2'

y32ÿ xyz 1
30 P2

3 sin 2'

y31� �5z2 ÿ r2�x 2
3 P1

3 cos '

y31ÿ �5z2 ÿ r2�y 2
3 P1

3 sin '

y30 �5z2 ÿ 3r2�z 2P0
3

y44� x4 ÿ 6x2y2 � y4 1
105 P4

4 cos 4'

y44ÿ �x2 ÿ y2�xy 1
420 P4

4 sin 4'

y43� �x2 ÿ 3y2�xz 1
105 P3

4 cos 3'

y43ÿ �3x2 ÿ y2�yz 1
105 P3

4 sin 3'

y42� �7z2 ÿ r2��x2 ÿ y2� 2
15 P2

4 cos 2'

y42ÿ �7z2 ÿ r2�xy 1
15 P2

4 sin 2'

y41� �7z2 ÿ 3r2�xz 2
5 P1

4 cos '

y41ÿ �7z2 ÿ 3r2�yz 2
5 P1

4 sin '

y40 7z4 ÿ 6z2r2 � �3=5�r4 8
5 P0

4
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APPENDIX C
Correspondence between hexadecapole traceless

moments and Q4m

The hexadecapole part VH(r) of the electrostatic
potential is then [as in formula (8)]

VH�r� � �Q44�x4 ÿ 6x2y2 � y4� �Q4�4�x2 ÿ y2�xy

�Q43�x2 ÿ 3y2�xz�Q4�3�3x2 ÿ y2�yz�
� jrÿ Rgjÿ9

� �Q42�7z2 ÿ r2��x2 ÿ y2� �Q4�2�7z2 ÿ r2�xy

�Q41�7z2 ÿ 3r2�xz�Q4�1�7z2 ÿ 3r2�yz�
� jrÿ Rgjÿ9

�Q40�7z4 ÿ 6z2r2 � �3=5�r4�jrÿ Rgjÿ9;

which can be formulated as

VH�r� � jrÿ Rgjÿ9��Q44 ÿQ42 � 3
5 Q40�x4

� �Q44 �Q42 � 3
5 Q40�y4 � �85 Q40�z4

� �Q4�4 ÿQ4�2�x3y� �ÿQ4�4 ÿQ4�2�y3x

� �Q43 ÿ 3Q41�x3z� �ÿ3Q43 ÿ 3Q41�xy2z

� �3Q4�3 ÿ 3Q4�1�x2yz� �ÿQ4�3 ÿ 3Q4�1�y3z

� �6Q42 ÿ 24
5 Q40�x2z2

� �ÿ6Q44 � 6
5 Q40�x2y2

� �ÿ6Q42 ÿ 24
5 Q40�y2z2 � �6Q4�2�xyz2

� �4Q4�1�yz3 � �4Q41�xz3�:

Therefore, the correspondence between the Buck-
ingham hexadecapole traceless moments and the ®tted
Q4m moments is

�xxxx � Q44 ÿQ42 � 3
5 Q40 �yyyx � ÿ 1

4 �Q4�4 �Q4�2�
�zzzx � Q41 �xxxy � 1

4 �Q4�4 ÿQ4�2�
�yyyy � Q44 �Q42 � 3

5 Q40 �xxyy � ÿQ44 � 1
5 Q40

�xxzz � Q42 ÿ 4
5 Q40 �yyzz � ÿQ42 ÿ 4

5 Q40

�zzzz � 8
5 Q40 �xxyz � 1

4 �Q4�3 ÿQ4�1�
�yyyz � ÿ 1

4 �Q4�3 � 3Q4�1� �zzzy � Q4�1

�xyyz � ÿ 1
4 �Q43 �Q41� �xyzz � 1

2 Q4�2

�xxxz � 1
4 �Q43 ÿ 3Q41�:
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